Candida albicans and Candida krusei differentially induce human blood mononuclear cell interleukin-12 and gamma interferon production.

نویسندگان

  • J Xiong
  • K Kang
  • L Liu
  • Y Yoshida
  • K D Cooper
  • M A Ghannoum
چکیده

Protection against Candida infection involves both innate and acquired immune responses, and cytokines produced by monocytes during the innate response may modify the acquired immune response by T cells. We hypothesized that Candida species which differ in pathogenicity can differentially induce production of immunoregulatory cytokines by human monocytes, which in turn modify T cells for immune responses to Candida. To test this hypothesis, we examined the effects of Candida albicans and Candida krusei on immunoregulatory cytokine production by human monocytes and gamma interferon (IFN-gamma) production by peripheral blood mononuclear cells (PBMC). Purified monocytes were incubated with live or heat-killed strains of C. albicans and C. krusei at the optimal Candida/monocyte ratio of 0.5. Cytokines in the supernatants were measured by enzyme-linked immunosorbent assay. Our data demonstrated that live C. albicans and C. krusei significantly induced interleukin-10 (IL-10), monocyte chemotactic factor 1, IL-1beta, and tumor necrosis factor alpha production by monocytes relative to unstimulated monocytes. In contrast, unlike C. krusei, pathogenic live strains of C. albicans induced no or only a minimal level of IL-12. The expression of IL-12 p40 mRNA levels by reverse transcription-PCR corroborated the IL-12 protein (p70) findings. In human PBMC, human blood monocytes were the major source of both IL-10 and IL-12 production in response to C. albicans and C. krusei. Upon activation of T cells in the presence of Candida-modified monocytes and antigen-presenting cells, IL-12 production by PBMC treated with Candida organisms correlated strongly with the level of IFN-gamma production by T cells. These results indicate that the virulence of C. albicans may be related to its ability to induce the monocytic type II cytokine IL-10, with a selective inhibition of IL-12 production, which may be responsible for the observed lack of T-cell IFN-gamma and may restrain an effective type I immune response to Candida.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential cytokine production and Toll-like receptor signaling pathways by Candida albicans blastoconidia and hyphae.

Toll-like receptors (TLR) are crucial for an efficient antifungal defense. We investigated the differential recognition of blastoconidia and hyphae of Candida albicans by TLRs. In contrast to Candida blastoconidia, which stimulated large amounts of gamma interferon (IFN-gamma), the tissue-invasive Candida hyphae did not stimulate any IFN-gamma by human peripheral blood mononuclear cells (PBMC) ...

متن کامل

Hyphae and yeasts of Candida albicans differentially regulate interleukin-12 production by human blood monocytes: inhibitory role of C. albicans germination.

The role of Candida albicans yeast-to-hyphae transition in interleukin-12 (IL-12) production by monocytes was investigated. Germinating C. albicans not only failed to induce IL-12 p70 but also suppressed IL-12 production induced by heat-killed C. albicans. Comparison of the abilities of germinating C. albicans and agerminating mutants to inhibit IL-12 production showed that germination of C. al...

متن کامل

Inhibition of monocytic interleukin-12 production by Candida albicans via selective activation of ERK mitogen-activated protein kinase.

Our previous data demonstrated that live Candida albicans inhibits interleukin-12 (IL-12) production by human monocytes. Here we explored whether C. albicans inhibits IL-12 via a released factor and whether the inhibition is mediated via mitogen-activated protein kinase (MAPK) regulation. Supernatant fluids were obtained from cultured C. albicans (SC5314) as well as cultured Saccharomyces cerev...

متن کامل

A 70-kilodalton recombinant heat shock protein of Candida albicans is highly immunogenic and enhances systemic murine candidiasis.

The 70-kDa recombinant Candida albicans heat shock protein (CaHsp70) and its 21-kDa C-terminal and 28-kDa N-terminal fragments (CaHsp70-Cter and CaHsp70-Nter, respectively) were studied for their immunogenicity, including proinflammatory cytokine induction in vitro and in vivo, and protection in a murine model of hematogenous candidiasis. The whole protein and its two fragments were strong indu...

متن کامل

Functional genomics identifies type I interferon pathway as central for host defense against Candida albicans

Candida albicans is the most common human fungal pathogen causing mucosal and systemic infections. However, human antifungal immunity remains poorly defined. Here by integrating transcriptional analysis and functional genomics, we identified Candida-specific host defence mechanisms in humans. Candida induced significant expression of genes from the type I interferon pathway in human peripheral ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Infection and immunity

دوره 68 5  شماره 

صفحات  -

تاریخ انتشار 2000